Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.242
Filtrar
1.
J Environ Sci Health B ; 57(6): 458-469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422183

RESUMO

Glyphosate applied at low doses can stimulate photosynthesis and yield. The objective of this study was to evaluate the application of low doses of glyphosate and sowing seasons in physiological characteristics and grain yield of common bean of early cycle. Two experiments were conducted in the field, the first in winter season and the second in wet season. The experimental design was a randomized complete block design, consisting of five and seven low doses of glyphosate and one period of application, with four replications. Glyphosate low dose of 108.0 g a.e. ha-1 impaired net CO2 assimilation rate, stomatal conductance, transpiration rate, instantaneous carboxylation efficiency, number of pods per plant, number of grains per plant and number of grains per pod. Glyphosate dose of 7.2 g a.e. ha-1 provided a 23% increase in grain yield in winter season, and the dose of 36.0 g a.e. ha-1 provided a 109% increase in grain yield in wet season. To our knowledge, this is the first report on effect of glyphosate at low doses and sowing season to obtain yield increases in common bean of early cycle.


Assuntos
Glicina/administração & dosagem , Herbicidas/administração & dosagem , Phaseolus/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Phaseolus/fisiologia , Fotossíntese/efeitos dos fármacos , Estações do Ano
2.
Sci Rep ; 12(1): 2750, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177723

RESUMO

Foraminifera are abundant unicellular organisms that play an important role in marine element cycles. A large benthic foraminifer obligatory bearing photosymbionts is Heterostegina depressa. We studied potential impacts of sunscreens available on the market on the activity of photosymbionts on H. depressa by means of pulse-amplitude modulated (PAM) fluorescence microscopy. We included four different sunscreens, with two of them sold as "conventional" and two more stated as "eco-friendly". Further, the impact of pure Ensulizole (phenylbenzimidazole sulfonic acid) was tested, which is a common agent of sunscreens. Foraminifera were incubated at varying concentrations (10, 50 and 200 mgL-1) of different sunscreens and the pure Ensulizole for 14 days. The photosynthetic performance was measured after 1,3, 7 and 14 days. Pure Ensulizole had a strong negative impact on the photobionts, which was reflected by a significant reduction of the areal fluorescence signal. "Eco-friendly" sunscreens affected the health of foraminifera more severely compared to "conventional" ones. We assume that metal nanoparticles like titanium dioxide or zinc oxide of "eco-friendly" sunscreens are causing this impact, because these substances were already classified as toxic for several microorganisms.


Assuntos
Foraminíferos/metabolismo , Fotossíntese/efeitos dos fármacos , Protetores Solares/farmacologia
3.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162955

RESUMO

The effect of exogenously-applied ethylene sourced from ethephon (2-chloroethyl phosphonic acid)was studied on photosynthesis, carbohydrate metabolism, and high-temperature stress tolerance in Taipei-309 and Rasi cultivars of rice (Oryza sativa L.). Heat stress increased the content of H2O2 and thiobarbituric acid reactive substances (TBARS)more in Rasi than Taipei-309. Further, a significant decline in sucrose, starch, and carbohydrate metabolism enzyme activity and photosynthesis was also observed in response to heat stress. The application of ethephon reduced H2O2 and TBARS content by enhancing the enzymatic antioxidant defense system and improved carbohydrate metabolism, photosynthesis, and growth more conspicuously in Taipei-309 under heat stress. The ethephon application enhanced photosynthesis by up-regulating the psbA and psbB genes of photosystem II in heat-stressed plants. Interestingly, foliar application of ethephoneffectively down-regulated high-temperature-stress-induced elevated ethylene biosynthesis gene expression. Overall, ethephon application optimized ethylene levels under high-temperature stress to regulate the antioxidant enzymatic system and carbohydrate metabolism, reducing the adverse effects on photosynthesis. These findings suggest that ethylene regulates photosynthesis via carbohydrate metabolism and the antioxidant system, thereby influencing high-temperature stress tolerance in rice.


Assuntos
Antioxidantes/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Oryza/crescimento & desenvolvimento , Complexo de Proteína do Fotossistema II/genética , Etilenos/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Compostos Organofosforados/química , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/genética , Termotolerância , Tiobarbitúricos/metabolismo
4.
BMC Plant Biol ; 22(1): 11, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979944

RESUMO

BACKGROUND: Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. RESULTS: In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT-PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. CONCLUSIONS: Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community.


Assuntos
Secas , Fotossíntese/efeitos dos fármacos , Ácido Poliglutâmico/análogos & derivados , Rizosfera , Microbiologia do Solo , Zea mays/fisiologia , Microbiota/efeitos dos fármacos , Ácido Poliglutâmico/farmacologia , Zea mays/efeitos dos fármacos
5.
Microbiol Spectr ; 10(1): e0093421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019679

RESUMO

Phaeocystis globosa causes severe marine pollution by forming harmful algal blooms and releasing hemolytic toxins and is therefore harmful to marine ecosystems and aquaculture industries. In this study, Microbulbifer sp. YX04 exerted high algicidal activity against P. globosa by producing and secreting metabolites. The algicidal activity of the YX04 supernatant was stable after exposure to different temperatures (-80 to 100°C) and pH values (4 to 12) for 2 h, suggesting that algicidal substances could temporarily be stored under these temperature and pH value conditions. To explore the algicidal process and mechanism, morphological and structural changes, oxidative stress, photosynthesis, autophagic flux, and global gene expression were investigated. Biochemical analyses showed that the YX04 supernatant induced reactive oxygen species (ROS) overproduction, which caused lipid peroxidation and malondialdehyde (MDA) accumulation in P. globosa. Transmission electron microscopy (TEM) observation and the significant decrease in both maximum photochemical quantum yield (Fv/Fm) and relative electron transfer rate (rETR) indicated damage to thylakoid membranes and destruction of photosynthetic system function. Immunofluorescence, immunoblot, and TEM analyses indicated that cellular damage caused autophagosome formation and triggered large-scale autophagic flux in P. globosa. Transcriptome analysis revealed many P. globosa genes that were differentially expressed in response to YX04 stress, most of which were involved in photosynthesis, respiration, cytoskeleton, microtubule, and autophagosome formation and fusion processes, which may trigger autophagic cell death. In addition to P. globosa, the YX04 supernatant showed high algicidal activity against Thalassiosira pseudonana, Thalassiosira weissflogii, Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense. This study highlights multiple mechanisms underlying YX04 supernatant toxicity toward P. globosa and its potential for controlling the occurrence of harmful algal blooms. IMPORTANCEP. globosa is one of the most notorious harmful algal bloom (HAB)-causing species, which can secrete hemolytic toxins, frequently cause serious ecological pollution, and pose a health hazard to animals and humans. Hence, screening for bacteria with high algicidal activity against P. globosa and studies on the algicidal characteristics and mechanism will contribute to providing an ecofriendly microorganism-controlling agent for preventing the occurrence of algal blooms and reducing the harm of algal blooms to the environment. Our study first reported the algicidal characteristic and mechanism of Microbulbifer sp. YX04 against P. globosa and demonstrated that P. globosa shows different response mechanisms, including movement ability, antioxidative systems, photosynthetic systems, gene expression, and cell death mode, to adapt to the adverse environment when algicidal compounds are present.


Assuntos
Morte Celular Autofágica , Gammaproteobacteria/química , Haptófitas/citologia , Haptófitas/efeitos dos fármacos , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Gammaproteobacteria/metabolismo , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Proliferação Nociva de Algas , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/farmacologia , Concentração de Íons de Hidrogênio , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio
6.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996872

RESUMO

The target of rapamycin (TOR) kinase is a master regulator that integrates nutrient signals to promote cell growth in all eukaryotes. It is well established that amino acids and glucose are major regulators of TOR signaling in yeast and metazoan, but whether and how TOR responds to carbon availability in photosynthetic organisms is less understood. In this study, we showed that photosynthetic assimilation of CO2 by the Calvin-Benson-Bassham (CBB) cycle regulates TOR activity in the model single-celled microalga Chlamydomonas reinhardtii Stimulation of CO2 fixation boosted TOR activity, whereas inhibition of the CBB cycle and photosynthesis down-regulated TOR. We uncovered a tight link between TOR activity and the endogenous level of a set of amino acids including Ala, Glu, Gln, Leu, and Val through the modulation of CO2 fixation and the use of amino acid synthesis inhibitors. Moreover, the finding that the Chlamydomonas starch-deficient mutant sta6 displayed disproportionate TOR activity and high levels of most amino acids, particularly Gln, further connected carbon assimilation and amino acids to TOR signaling. Thus, our results showed that CO2 fixation regulates TOR signaling, likely through the synthesis of key amino acids.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Sirolimo/farmacologia , Proteínas de Algas/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Transdução de Sinais/efeitos dos fármacos , Amido/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
BMC Plant Biol ; 22(1): 16, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983373

RESUMO

BACKGROUND: Soil salinization is becoming an increasingly serious problem worldwide, resulting in cultivated land loss and desertification, as well as having a serious impact on agriculture and the economy. The indoleamine melatonin (N-acetyl-5-methoxytryptamine) has a wide array of biological roles in plants, including acting as an auxin analog and an antioxidant. Previous studies have shown that exogenous melatonin application alleviates the salt-induced growth inhibition in non-halophyte plants; however, to our knowledge, melatonin effects have not been examined on halophytes, and it is unclear whether melatonin provides similar protection to salt-exposed halophytic plants. RESULTS: We exposed the halophyte Limonium bicolor to salt stress (300 mM) and concomitantly treated the plants with 5 µM melatonin to examine the effect of melatonin on salt tolerance. Exogenous melatonin treatment promoted the growth of L. bicolor under salt stress, as reflected by increasing its fresh weight and leaf area. This increased growth was caused by an increase in net photosynthetic rate and water use efficiency. Treatment of salt-stressed L. bicolor seedlings with 5 µM melatonin also enhanced the activities of antioxidants (superoxide dismutase [SOD], peroxidase [POD], catalase [CAT], and ascorbate peroxidase [APX]), while significantly decreasing the contents of hydrogen peroxide (H2O2), superoxide anion (O2•-), and malondialdehyde (MDA). To screen for L. bicolor genes involved in the above physiological processes, high-throughput RNA sequencing was conducted. A gene ontology enrichment analysis indicated that genes related to photosynthesis, reactive oxygen species scavenging, the auxin-dependent signaling pathway and mitogen-activated protein kinase (MAPK) were highly expressed under melatonin treatment. These data indicated that melatonin improved photosynthesis, decreased reactive oxygen species (ROS) and activated MAPK-mediated antioxidant responses, triggering a downstream MAPK cascade that upregulated the expression of antioxidant-related genes. Thus, melatonin improves the salt tolerance of L. bicolor by increasing photosynthesis and improving cellular redox homeostasis under salt stress. CONCLUSIONS: Our results showed that melatonin can upregulate the expression of genes related to photosynthesis, reactive oxygen species scavenging and mitogen-activated protein kinase (MAPK) of L. bicolor under salt stress, which can improve photosynthesis and antioxidant enzyme activities. Thus melatonin can promote the growth of the species and maintain the homeostasis of reactive oxygen species to alleviate salt stress.


Assuntos
Antioxidantes/metabolismo , Melatonina/farmacologia , Fotossíntese/efeitos dos fármacos , Plumbaginaceae/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plumbaginaceae/genética , Plumbaginaceae/crescimento & desenvolvimento , Plumbaginaceae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Tolerância ao Sal/efeitos dos fármacos
8.
Plant Physiol ; 188(3): 1550-1562, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34893891

RESUMO

The availability of inorganic phosphate (Pi) for ATP synthesis is thought to limit photosynthesis at elevated [CO2] when Pi regeneration via sucrose or starch synthesis is limited. We report here another mechanism for the occurrence of Pi-limited photosynthesis caused by insufficient capacity of chloroplast triose phosphate isomerase (cpTPI). In cpTPI-antisense transgenic rice (Oryza sativa) plants with 55%-86% reductions in cpTPI content, CO2 sensitivity of the rate of CO2 assimilation (A) decreased and even reversed at elevated [CO2]. The pool sizes of the Calvin-Benson cycle metabolites from pentose phosphates to 3-phosphoglycerate increased at elevated [CO2], whereas those of ATP decreased. These phenomena are similar to the typical symptoms of Pi-limited photosynthesis, suggesting sufficient capacity of cpTPI is necessary to prevent the occurrence of Pi-limited photosynthesis and that cpTPI content moderately affects photosynthetic capacity at elevated [CO2]. As there tended to be slight variations in the amounts of total leaf-N depending on the genotypes, relationships between A and the amounts of cpTPI were examined after these parameters were expressed per unit amount of total leaf-N (A/N and cpTPI/N, respectively). A/N at elevated [CO2] decreased linearly as cpTPI/N decreased before A/N sharply decreased, owing to further decreases in cpTPI/N. Within this linear range, decreases in cpTPI/N by 80% led to decreases up to 27% in A/N at elevated [CO2]. Thus, cpTPI function is crucial for photosynthesis at elevated [CO2].


Assuntos
Cloroplastos/metabolismo , Inibidores Enzimáticos/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfatos/metabolismo , Fotossíntese/efeitos dos fármacos , Triose-Fosfato Isomerase/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas/metabolismo
9.
Plant J ; 109(2): 432-446, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555243

RESUMO

Ozone (O3 ) is a damaging air pollutant to crops. As one of the most reactive oxidants known, O3 rapidly forms other reactive oxygen species (ROS) once it enters leaves through stomata. Those ROS in turn can cause oxidative stress, reduce photosynthesis, accelerate senescence, and decrease crop yield. To improve and adapt our feed, fuel, and food supply to rising O3 pollution, a number of Free Air Concentration Enrichment (O3 -FACE) facilities have been developed around the world and have studied key staple crops. In this review, we provide an overview of the FACE facilities and highlight some of the lessons learned from the last two decades of research. We discuss the differences between C3 and C4 crop responses to elevated O3 , the possible trade-off between productivity and protection, genetic variation in O3 response within and across species, and how we might leverage this observed variation for crop improvement. We also highlight the need to improve understanding of the interaction between rising O3 pollution and other aspects of climate change, notably drought. Finally, we propose the use of globally modeled O3 data that are available at increasing spatial and temporal resolutions to expand upon the research conducted at the limited number of global O3 -FACE facilities.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Mudança Climática , Produtos Agrícolas/fisiologia , Ozônio/efeitos adversos , Fotossíntese , Agricultura , Poluição do Ar/efeitos adversos , Dióxido de Carbono/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Secas , Variação Genética , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos
10.
PLoS One ; 16(12): e0261472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914788

RESUMO

Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde conent were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.


Assuntos
Aclimatação/efeitos dos fármacos , Secas , Compostos Organofosforados/farmacologia , Poa/genética , Estresse Fisiológico/efeitos dos fármacos , China , Meio Ambiente , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Poa/metabolismo , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/genética , Água/metabolismo
11.
PLoS One ; 16(12): e0260556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34928959

RESUMO

Wheat is an important cereal crop, which is adversely affected by water deficit stress. The effect of induced stress can be reduced by the application of salicylic acid (SA). With the objective to combat drought stress in wheat, an experiment was conducted in greenhouse under hydroponic conditions. The treatments consisted of (a) no drought (DD0 = 0 MPa), mild drought (DD1 = -0.40 MPa) and severe drought (DD2 = -0.60 MPa) by applying PEG-8000, (b) two contrasting wheat varieties Barani-17 (drought tolerant) and Anaj-17 (drought-sensitive), and (c) foliar treatments of salicylic acid (0, 50 mM, 75 mM, and 100 mM). Evaluation of wheat plants regarding biochemical, physiological, and morphological attributes were rendered after harvesting of plants. Statistically, maximum shoot and root fresh and dry weights (18.77, 11.15 and 1.99, 1.81 g, respectively) were recorded in cultivar Barani-17 under no drought condition with the application of SA (100 mM). While, minimum shoot and root fresh and dry weights (6.65, 3.14 and 0.73, 0.61 g, respectively) were recorded in cultivar Anaj-2017 under mild drought stress without SA application. The maximum shoot length (68.0 cm) was observed in cultivar Barani-2017 under no drought condition with the application of SA (100 mM). While, maximum root length (59.67 cm) was recorded in cultivar Anaj-17 under moderate drought stress without application of SA. Further, minimum shoot length (28.67 cm) was recorded in Anaj-17 under moderate drought stress without SA application. Minimum root length (38.67 cm) was recorded in cultivar Barani-17 under no drought condition without SA application. Furthermore, maximum physio-biochemical traits, including membrane stability index (MSI), chlorophyl content, photosynthetic rates, stomatal conductance, antioxidant enzymatic activities and relative water content (RWC) were found highest in cultivar Barani-17 under no drought stress and SA application at 100 mM. However, minimum values of these traits were recorded in cultivar Anaj-17 under severe drought stress without SA application. Our results also demonstrated that under severe drought, application of SA at 100 mM significantly increased leaf nitrogen (N), phosphrus (P) and potassium (K) contents and cultivar Barani-17 demonstrated significantly higher values than Anaj-17. The obtained results also indicated that the cultivation of wheat under drought stress conditions noticeably declines the morphological, physiological, and biochemical attributes of the plants. However, the exogenous application of SA had a positive impact on wheat crop for enhancing its productivity.


Assuntos
Secas , Ácido Salicílico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Clorofila/análise , Clorofila/metabolismo , Hidroponia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Triticum/fisiologia
12.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948146

RESUMO

Copper (Cu) is an essential element involved in various metabolic processes in plants, but at concentrations above the threshold level, it becomes a potential stress factor. The effects of two different cytokinins, kinetin (KIN) and 6-benzylaminopurine (BAP), on chlorophyll a fluorescence parameters, stomatal responses and antioxidation mechanisms in castor (Ricinus communis L.) under Cu2+ toxicity was investigated. Ricinus communis plants were exposed to 80 and 160 µM CuSO4 added to the growth medium. Foliar spraying of 15 µM KIN and BAP was carried out on these seedlings. The application of these cytokinins enhanced the tissue water status, chlorophyll contents, stomatal opening and photosynthetic efficiency in the castor plants subjected to Cu2+ stress. The fluorescence parameters, such as Fm, Fv/Fo, Sm, photochemical and non-photochemical quantum yields, energy absorbed, energy trapped and electron transport per cross-sections, were more efficiently modulated by BAP application than KIN under Cu2+ toxicity. There was also effective alleviation of reactive oxygen species by enzymatic and non-enzymatic antioxidation systems, reducing the membrane lipid peroxidation, which brought about a relative enhancement in the membrane stability index. Of the various treatments, 80 µM CuSO4 + BAP recorded the highest increase in photosynthetic efficiency compared to other cytokinin treatments. Therefore, it can be concluded that BAP could effectively alleviate the detrimental effects of Cu2+toxicity in cotyledonary leaves of R. communis by effectively modulating stomatal responses and antioxidation mechanisms, thereby enhancing the photosynthetic apparatus' functioning.


Assuntos
Compostos de Benzil/farmacologia , Cobre/farmacologia , Fotossíntese/efeitos dos fármacos , Purinas/farmacologia , Ricinus/metabolismo , Plântula/metabolismo
13.
Sci Rep ; 11(1): 21636, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737333

RESUMO

Over 30 herbicides have been detected in catchments and waters of the Great Barrier Reef (GBR) and their toxicity to key tropical species, including the coral endosymbiotic algae Symbiodiniaceae, is not generally considered in current water quality guideline values (WQGVs). Mutualistic symbionts of the family Symbiodiniaceae are essential for the survival of scleractinian corals. We tested the effects of nine GBR-relevant herbicides on photosynthetic efficiency (ΔF/Fm') and specific growth rate (SGR) over 14 days of cultured coral endosymbiont Cladocopium goreaui (formerly Symbiodinium clade C1). All seven Photosystem II (PSII) herbicides tested inhibited ΔF/Fm' and SGR, with toxicity thresholds for SGR ranging between 2.75 and 320 µg L-1 (no effect concentration) and 2.54-257 µg L-1 (EC10). There was a strong correlation between EC50s for ΔF/Fm' and SGR for all PSII herbicides indicating that inhibition of ΔF/Fm' can be considered a biologically relevant toxicity endpoint for PSII herbicides to this species. The non-PSII herbicides haloxyfop and imazapic did not affect ΔF/Fm' or SGR at the highest concentrations tested. The inclusion of this toxicity data for Symbiodiniaceae will contribute to improving WQGVs to adequately inform risk assessments and the management of herbicides in tropical marine ecosystems.


Assuntos
Antozoários/efeitos dos fármacos , Antozoários/metabolismo , Herbicidas/efeitos adversos , Animais , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Ecossistema , Herbicidas/farmacologia , Herbicidas/toxicidade , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Simbiose/fisiologia , Poluentes Químicos da Água/farmacologia
14.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769033

RESUMO

Copper (Cu) is an essential element for most living plants, but it is toxic for plants when present in excess. To better understand the response mechanism under excess Cu in plants, especially in flowers, transcriptome sequencing on petunia buds and opened flowers under excess Cu was performed. Interestingly, the transcript level of FIT-independent Fe deficiency response genes was significantly affected in Cu stressed petals, probably regulated by basic-helix-loop-helix 121 (bHLH121), while no difference was found in Fe content. Notably, the expression level of bHLH121 was significantly down-regulated in petals under excess Cu. In addition, the expression level of genes related to photosystem II (PSII), photosystem I (PSI), cytochrome b6/f complex, the light-harvesting chlorophyll II complex and electron carriers showed disordered expression profiles in petals under excess Cu, thus photosynthesis parameters, including the maximum PSII efficiency (FV/FM), nonphotochemical quenching (NPQ), quantum yield of the PSII (ΦPS(II)) and photochemical quenching coefficient (qP), were reduced in Cu stressed petals. Moreover, the chlorophyll a content was significantly reduced, while the chlorophyll b content was not affected, probably caused by the increased expression of chlorophyllide a oxygenase (CAO). Together, we provide new insight into excess Cu response and the Cu-Fe crosstalk in flowers.


Assuntos
Cobre/farmacologia , Petunia/efeitos dos fármacos , Petunia/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Clorofila/genética , Clorofila A/genética , Perfilação da Expressão Gênica/métodos , Ferro/farmacologia , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética
15.
Genes (Basel) ; 12(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34828340

RESUMO

Excessive aluminum ions (Al3+) in acidic soil can have a toxic effect on watermelons, restricting plant growth and reducing yield and quality. In this study, we found that exogenous application of nitric oxide (NO) could increase the photochemical efficiency of watermelon leaves under aluminum stress by promoting closure of leaf stomata, reducing malondialdehyde and superoxide anion in leaves, and increasing POD and CAT activity. These findings showed that the exogenous application of NO improved the ability of watermelon to withstand aluminum stress. To further reveal the mitigation mechanism of NO on watermelons under aluminum stress, the differences following different types of treatments-normal growth, Al, and Al + NO-were shown using de novo sequencing of transcriptomes. In total, 511 differentially expressed genes (DEGs) were identified between the Al + NO and Al treatment groups. Significantly enriched biological processes included nitrogen metabolism, phenylpropane metabolism, and photosynthesis. We selected 23 genes related to antioxidant enzymes and phenylpropane metabolism for qRT-PCR validation. The results showed that after exogenous application of NO, the expression of genes encoding POD and CAT increased, consistent with the results of the physiological indicators. The expression patterns of genes involved in phenylpropanoid metabolism were consistent with the transcriptome expression abundance. These results indicate that aluminum stress was involved in the inhibition of the photosynthetic pathway, and NO could activate the antioxidant enzyme defense system and phenylpropane metabolism to protect cells and scavenge reactive oxygen species. This study improves our current understanding by comprehensively analyzing the molecular mechanisms underlying NO-induced aluminum stress alleviation in watermelons.


Assuntos
Alumínio/metabolismo , Alumínio/toxicidade , Citrullus/efeitos dos fármacos , Citrullus/fisiologia , Óxido Nítrico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma , Fenômenos Biológicos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Propanóis/metabolismo , Solo/química
16.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831328

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.


Assuntos
Cério/farmacologia , Nanopartículas Metálicas/química , Nutrientes , Fotossíntese , Óxido de Zinco/farmacologia , Cério/metabolismo , /crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Ribulosefosfatos/metabolismo , Zinco/metabolismo
17.
Cells ; 10(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34831377

RESUMO

Hydrangea macrophylla is a popular perennial ornamental shrub commercially grown as potted plants, landscape plants, and cut flowers. In the process of reproduction and production of ornamental plants, the absorption of nutrients directly determines the value of the ornamental plants. Hydrangea macrophylla is very sensitive to the content and absorption of the micronutrient iron (Fe) that affects growth of its shoots. However, the physiological activity of Fe as affected by deficiency or supplementation is unknown. This work aimed at preliminary exploring the relationship between Fe and photosynthesis, and also to find the most favorable iron source and level of pH for the growth of H. macrophylla. Two Fe sources, non-chelated iron sulfate (FeSO4) and iron ethylenediaminetetraacetic acid (Fe-EDTA), were supplemented to the multipurpose medium with a final Fe concentration of 2.78 mg·L-1. The medium without any Fe supplementation was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70, before autoclaving. The experiment was conducted in a culture room for 60 days with 25/18 °C day and night temperatures, and a 16-hour photoperiod provided at a light intensity of 50 mmol·m-2·s-1 photosynthetic photon flux density (PPFD) from white light-emitting diodes. Supplementary Fe increased the tissue Fe content, and leaves were greener with the medium pH of 4.70, regardless of the Fe source. Compared to the control, the number of leaves for plantlets treated with FeSO4 and Fe-EDTA were 2.0 and 1.5 times greater, respectively. The chlorophyll, macronutrient, and micronutrient contents were the greatest with Fe-EDTA at pH 4.70. Furthermore, the Fe in the leaf affected the photosynthesis by regulating stomata development, pigment content, and antioxidant system, and also by adjusting the expression of genes related to Fe absorption, transport, and redistribution. Supplementation of Fe in a form chelated with EDTA along with a medium pH of 4.70 was found to be the best for the growth and development of H. macrophylla plantlets cultured in vitro.


Assuntos
Hydrangea/crescimento & desenvolvimento , Ferro/farmacologia , Antioxidantes/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , FMN Redutase/metabolismo , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hydrangea/anatomia & histologia , Hydrangea/efeitos dos fármacos , Hydrangea/enzimologia , Concentração de Íons de Hidrogênio , Micronutrientes/análise , Modelos Biológicos , Nutrientes/análise , Fotossíntese/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/ultraestrutura , Solubilidade
18.
Sci Rep ; 11(1): 19831, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615889

RESUMO

The 2010 Deepwater Horizon oil-spill exposed the microbes of Gulf of Mexico to unprecedented amount of oil. Conclusive evidence of the underlying molecular mechanism(s) on the negative effects of oil exposure on certain phytoplankton species such as Thalassiosira pseudonana is still lacking, curtailing our understanding of how oil spills alter community composition. We performed experiments on model diatom T. pseudonana to understand the mechanisms underpinning observed reduced growth and photosynthesis rates during oil exposure. Results show severe impairment to processes upstream of photosynthesis, such as light absorption, with proteins associated with the light harvesting complex damaged while the pigments were unaffected. Proteins associated with photosynthetic electron transport were also damaged, severely affecting photosynthetic apparatus and depriving cells of energy and carbon for growth. Negative growth effects were alleviated when an organic carbon source was provided. Further investigation through proteomics combined with pathway enrichment analysis confirmed the above findings, while highlighting other negatively affected processes such as those associated with ferroxidase complex, high-affinity iron-permease complex, and multiple transmembrane transport. We also show that oxidative stress is not the primary route of negative effects, rather secondary. Overall, this study provides a mechanistic understanding of the cellular damage that occurs during oil exposure to T. pseudonana.


Assuntos
Biocombustíveis/efeitos adversos , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Poluição por Petróleo/efeitos adversos , Biomarcadores , Diatomáceas/metabolismo , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos
19.
Int J Biol Macromol ; 190: 769-779, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520779

RESUMO

Herbaceous peony (Paeonia lactiflora Pall.) is a popular high-end cut flower, but stem bending caused by low stem strength severely decreases its quality. To enhance stem strength, the regulatory effects of exogenous silicon were investigated in P. lactiflora. The results showed that silicon application enhanced stem strength by increasing the thickness of secondary cell walls and the layers of thickened secondary cells. Moreover, more lignin accumulated, particularly G-lignin and S-lignin, and the activities of lignin biosynthetic enzymes increased with silicon application. In addition, based on transcriptome analysis, silicon application induced the expression of genes participating in lignin biosynthesis pathway. Among them, hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase gene (HCT1) was isolated from P. lactiflora and found to be mainly localized in the cytoplasm of cells. Overexpression of PlHCT1 increased the layers of thickened secondary cells and lignin accumulation in tobacco, resulting in enhanced stem strength and demonstrably straight stems. Finally, silicon content, lignin content and PlHCT1 expression in P. lactiflora cultivars with high stem strengths were totally higher than those in cultivars with low stem strengths. These results indicated that silicon application enhanced stem strength by promoting lignin accumulation in P. lactiflora, which has prospects for stem quality improvement in general.


Assuntos
Lignina/metabolismo , Paeonia/metabolismo , Caules de Planta/fisiologia , Silício/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Parede Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/biossíntese , Paeonia/efeitos dos fármacos , Paeonia/genética , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , RNA-Seq , /genética
20.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500550

RESUMO

Global warming is impacting the growth and development of economically important but sensitive crops, such as soybean (Glycine max L.). Using pleiotropic signaling molecules, melatonin can relieve the negative effects of high temperature by enhancing plant growth and development as well as modulating the defense system against abiotic stresses. However, less is known about how melatonin regulates the phytohormones and polyamines during heat stress. Our results showed that high temperature significantly increased ROS and decreased photosynthesis efficiency in soybean plants. Conversely, pretreatment with melatonin increased plant growth and photosynthetic pigments (chl a and chl b) and reduced oxidative stress via scavenging hydrogen peroxide and superoxide and reducing the MDA and electrolyte leakage contents. The inherent stress defense responses were further strengthened by the enhanced activities of antioxidants and upregulation of the expression of ascorbate-glutathione cycle genes. Melatonin mitigates heat stress by increasing several biochemicals (phenolics, flavonoids, and proline), as well as the endogenous melatonin and polyamines (spermine, spermidine, and putrescine). Furthermore, the positive effects of melatonin treatment also correlated with a reduced abscisic acid content, down-regulation of the gmNCED3, and up-regulation of catabolic genes (CYP707A1 and CYP707A2) during heat stress. Contrarily, an increase in salicylic acid and up-regulated expression of the defense-related gene PAL2 were revealed. In addition, melatonin induced the expression of heat shock protein 90 (gmHsp90) and heat shock transcription factor (gmHsfA2), suggesting promotion of ROS detoxification via the hydrogen peroxide-mediated signaling pathway. In conclusion, exogenous melatonin improves the thermotolerance of soybean plants and enhances plant growth and development by activating antioxidant defense mechanisms, interacting with plant hormones, and reprogramming the biochemical metabolism.


Assuntos
Antioxidantes/metabolismo , Homeostase/efeitos dos fármacos , Melatonina/farmacologia , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poliaminas/metabolismo , Plântula/efeitos dos fármacos , Termotolerância/efeitos dos fármacos , Ácido Abscísico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...